Polymorphism in $Sr_3Fe_2O_{7-x}$

ELIO LUCCHINI, DINO MINICHELLI, GIORGIO SLOCCARI *Istituto di Chimica Applicata, Universith di Trieste, 34127 Trieste, Italy*

The compound $S_{13}Fe₂O_{7-x}$, with variable iron valence, was investigated by X-ray powder techniques, both at room and at high temperatures. If the material is examined in massive form, a single phase called α -Sr₃Fe₂O_{7- π} appears as previously reported in the literature. This α -phase is tetragonal and exhibits the lattice parameters: $a = 3.874$ and $c = 40.314$ Å. Two other phases, called β and γ -Sr₃Fe₂O_{7-s}, respectively, can be obtained on heating the finely powdered material when laid on a flat platinum support. The γ form is stable up to 1275° C, while the β form is revealed only above 1275° C and changes always into γ - $Sr_aFe₂O_{7-x}$ when quenched. Both β and γ phases are tetragonal, with $a = 4.001$ and $c =$ 58.251 for the β form and $a = 4.013$, $c = 57.092$ Å for the γ form. The transition $\beta \leftrightarrow \gamma$ involves a true phase equilibrium, while the transformation $\alpha \leftrightarrow \gamma$ is possible only by means of a suitable mechanical treatment of the material.

1. Introduction

The magnetic properties of strontium hexaferrite, $SrFe₁₂O₁₉$, are technologically important and have led to the disclosure of the phase relationships in the system $SrO-Fe₂O₃$. In this phase diagram compositions corresponding to SrO. $6Fe₂O₃$, $7SrO·5Fe₂O₃$, $2SrO·Fe₂O₃$ and $3SrO·$ $Fe₂O₃$ occur as single phases [1]. A systematic study of the structural relationships in the mentioned compounds and in other alkaline earth ferrites was undertaken in this laboratory in order to contribute to the knowledge of their properties. Object of the present investigation is the characterization of $3SrO·Fe₂O₃$, the most basic compound in the system $SrO-Fe₂O₃$.

The compound $3SrO·Fe₂O₃$ was examined by Brisi *et al* [2, 3] and by Mac Chesney *et al* [4]; these authors suggested the presence of partially tetravalent iron atoms placed in the centre of perovskite layers. The formula $Sr_3Fe_2O_{7-x}$ was then assigned to this compund, with iron valence depending upon temperature, firing atmosphere and cooling rate.

Brisi [2] suggested an isomorphism between $Sr_3Fe_2O_{7-x}$ and $Sr_3Ti_2O_7$; the structure of the latter was reported by Ruddlesden and Popper [5]. $Sr_3Fe_2O_{7-x}$ was indexed according to a tetragonal symmetry $[2, 3]$ with *a*-axis varying from 3.868 to 3.897 Å and c -axis from 20.140 to 20.060 Å as a function of decreasing Fe^{+4} percentage.

Mac Chesney *et al* [4] prepared $Sr_3Fe_2O_{7-x}$ **212**

at variable oxygen pressures and obtained a broad range of compounds with oxygen stoichiometry varying from $Sr_3Fe_2O_6$ to Sr_3Fe_2 $O_{6.90}$. These authors also suggested the mentioned isomorphism and yielded lattice parameters in good agreement with those proposed by Brisi *et al* [2, 3].

Brisi *et al* [2, 3] obtained their specimens by air quenching, by slow air cooling and by quenching in vacuum or in $CO + H₂$ atmosphere, while Mac Chesney *et al* [4] did not report their cooling techniques; all these authors, according to the mentioned experimental procedures, detected the same type of phase.

Since other similar ferrites, with iron partially tetravalent, as $2BaO·Fe₂O₃$ and $2SrO·Fe₂O₃$ exhibit several crystal forms [3, 6-10], we have undertaken a systematic investigation of $3SrO·Fe₂O₃$ to ascertain the suspected polymorphism of this compound by observation of powder patterns of materials, both at high and room temperature.

2. Experimental

Mixtures of $SrCO₃$ and $Fe₂O₃$, of reagent grade purity, were mixed in a 3:1 molecular ratio in agate mortar, pressed into pellets and prefired both in air and in oxygen in an electric resistance furnace at 1200°C. After quenching, the resulting crystalline material was reground, pressed again into discs and fired in a controlled atmosphere at 1200° C to attain phase equilibrium. This was checked by examining polished sections of the samples by reflected light microscopy and powdered specimens by X-ray diffraction techniques; equilibrium was considered to have been attained when no change in phase composition could be detected by the mentioned techniques.

The equilibrated specimens were then reheated at fixed temperatures ranging from 1350 to 500° C in controlled atmosphere, both in massive and in finely powdered form. The air-quenched products obtained were then examined by X-ray equipment. The percentage of $Fe⁴⁺$ in these samples was determined by iodometric titration [11]. Great care was taken to avoid the hydration of the specimens, since $Sr_3Fe_2O_{7-x}$ easily absorbs water when in air atmosphere [1, 12].

X-ray powder diffraction data were recorded by a Guinier-de Wolff camera using $CuK\alpha$ radiation; the reflections were also collected by means of a horizontal goniometer with a scintillation counter, using C_0K_α radiation. A high-temperature attachment mounted on the goniometer permitted us to obtain powder diffraction data at various temperatures.

3. Results

Initially, the massive samples quenched from 1350° C were tested by X-ray powder diffraction methods; a single phase appeared as known from literature [2-4]. However, the possibility of obtaining reliable low angle data by means of the high resolution Guinier-de Wolff camera, permitted us to collect a reflection line of medium intensity at 13.5 Å d -value. This fact showed that the lattice parameters suggested by Brisi *et al* [2, 3] and Mac Chesney *et al* [4] were not correct. The powder pattern was then indexed on the basis of a new tetragonal unit cell by a computer program [13], with $a = 3.874 \pm 0.002$ and $c = 40.314 +$ 0.018 Å and a formula $Sr_3Fe_2O_{6.16}$ on iodometric determination of the percentage of $Fe⁴⁺$. This phase, hereafter called α -Sr₃Fe₂O_{7- α}, was subsequently obtained by quenching massive samples from various temperatures down to 850° C; the lattice parameters and the stoichiometry [11] of this α -phase, the structure of which was recently established [14], are summarized as a function of equilibrium conditions in Table I.

The quenched massive specimens were then finely powdered and laid on a flat Pt-Pt/Rh 40 $\%$ sample holder of the high-temperature attachment and heated to 1350° C in order to investigate the behaviour of the material at high

TABLE I Lattice parameters and composition of α -Sr₂Fe₂O_{7-x}

Composition	Temperature (°C)	a(A)	c(A)	
$Sr_3Fe_2O_{6.18}$	850	3.873	40.335	
$Sr_3Fe_2O_{6.17}$	1000	3.873	40.320	
$Sr_3Fe_2O_{6.16}$	1250	3.874	40.314	

temperatures. After 4 to 5 h at 1350° C, a new phase could be detected owing to the change of powder pattern. This phase, hereafter called $\overline{\beta}$ -Sr₃Fe₂O_{7-m}, exhibited a further reversible phase transformation on cooling the superimposed sample below $1275^{\circ} + 20^{\circ}$ C. This new phase, called γ -Sr₃Fe₂O_{7- α}, is stable over the whole range of the temperatures up to 1275° C, because quenched or slowly cooled specimens of it showed no substantial change in X-ray diffraction pattern. The β -phase, instead, could be observed only in its thermal stability range and yielded by quenching always γ -Sr₃Fe₂O_{7-x}.

The existence of a polymorphism in $Sr₃Fe₂O_{7-x}$ encouraged us to investigate the possibility of obtaining the γ -phase by other procedures. The massive samples were then finely powdered, reheated in a furnace at 1250° C and quenched both in air and in oxygen; the resulting X-ray pattern showed the presence of pure α -phase. Pure γ -phase was obtained by quenching powdered samples previously laid on a platinum strip and heated at 1250° C in a furnace; the same procedure yielded only γ -Sr₃Fe₂O_{7-x} also from temperatures above 1275° C. If γ -Sr₃Fe₂O_{7-x}, however, was scratched out of its metallic support and reheated in furnace at 1250° C, the quenched product again exhibited only the α -phase.

The X-ray Guinier-de Wolff powder pattern of the γ -phase, obtained by quenching specimens superimposed on a metallic support both in the high-temperature attachment and in furnace below 1275° C, exhibited two important reflection lines at low angles; γ -Sr₃Fe₂O_{7-x} was then indexed according to a tetragonal symmetry [13] with $a = 4.013 \pm 0.003$ and $c = 57.092$ \pm 0.050 Å and a formula Sr₃Fe₂O_{6.33} on iodometric determination of $Fe⁴⁺$. The lattice parameters and the stoichiometry [11] of this γ -phase are reported in Table II as a function of equilibrium conditions.

The presence of low angle reflections could not be detected in β -Sr₃Fe₂O_{7-x}, because our high-temperature recording technique did not

Composition	Temperature (°C)	a(A)	c(A)
$Sr3Fe2O6.47$	800	4.002	57.135
$Sr_3Fe_2O_{6.40}$	1000	4.010	57.111
$Sr3Fe2O6.33$	1250	4.013	57.092

TABLE II Lattice parameters and composition of TABLE III X-ray powder diffraction data of α - ν -Sr₃Fe₂O_{7- ν}

 $Sr₅Fe₂O₇$

enable us to investigate the Bragg interval below $\langle 10^{\circ}2\theta$; yet the indexing of the β -phase, belonging to a tetragonal symmetry, showed that the c-axis length was of the same order of magnitude as in the γ -phase and any attempt to reduce the c -axis failed to yield any significant convergence between experimental and calculated spacing values. The least-squares refined [13] lattice parameters of β -Sr_aFe₂O_{7-x} are $a = 4.001 + 0.005$ and $c = 58.251 + 0.080$ Å at 1350°C.

The experimental density for α -Sr₃Fe₂O_{7-x} is 5.1 g cm⁻³ by pycnometry methods (D_{calc} = 5.19 g cm⁻³, $Z = 4$); the calculated density values of the other phases are 5.03 g cm⁻³ for β -Sr₃Fe₂O_{7-x} (Z = 6) and 5.15 g cm⁻³ for $y-\text{Sr}_3\text{Fe}_2\text{O}_{7-x} (Z = 6).$

The X-ray powder diffraction data of our phases are summarized in Tables III, IV and V, respectively. The spacing values were corrected for absorption using $Pb(NO₃)₂$ as internal standard.

4. Conclusions

Our investigation showed that the transition between β and γ forms is a reversible transformation depending on temperature, while both α and γ forms are strictly correlated to their material appearance. Neither α -Sr₃Fe₂O_{7-x} changes into the γ form nor γ -Sr₃Fe₂O_{7-x} into the α form owing to a thermal treatment and, therefore, we cannot describe the transformation $\alpha \leftrightarrow \gamma$ as a true phase change.

The α -phase is stable over the whole range of temperatures up to the decomposition point and also the γ form, once obtained, changes into α -Sr₃Fe₂O_{7- α} only when heated and quenched after a mechanical treatment which reproduces the primitive conditions of the grain state. In spite of the absence of a true thermodynamic equilibrium between α and γ phases, both these forms remain unaltered indefinitely until they are submitted to one of the above described procedures.

To justify partially these phenomena, various

Intensities: $vs = very strong$, $s = strong$, $ms = medium$ strong, $m =$ medium, $w =$ weak, $vw =$ very weak, $vw =$ very very weak

hypotheses may be advanced. A certain discrepancy in oxygen stoichiometry between α

				TABLE IV X-ray powder diffraction data of β -		
$Sr_2Fe_2O_{7-x}$						

TABLE V X-ray powder diffraction data of γ - $Sr₅Fe₃O_{7-x}$

Intensities: $vs = very strong$, $s = strong$, $ms = medium$ strong, $m = \text{medium}$, $w = \text{weak}$, $vw = \text{very weak}$, $vw =$ very very weak

and γ phases could suggest a role of the percentage of $Fe⁴⁺$ in phase transformation; this phenomenon, however, is probably due to the great surface area of γ -Sr₃Fe₂O_{7-x}, as involved in the experimental procedure, which aids the oxygen absorption in the lattice.

The experimental results suggest the grain constraint of the material to be an important factor in the appearance of several phases; the massive samples always yield a single phase, the same detected in previous investigations [2-4]. However, the simple powdering of the specimens is not sufficient to reveal the presence of β and γ phases, which appear only when the powder is laid on a platinum flat layer. All these features in the $Sr_3Fe_2O_{7-x}$ behaviour seem therefore to suggest the existence of a complex mechanism regarding the formation of the γ -phase, which should be the object of further investigations.

Our X-ray powder techniques evidenced a remarkable c-axis length in all the phases. The ratio *c*/*a* is 10.4 for α -Sr₃Fe₂O_{7-x}, 14.6 for β and 14.2 for the γ -phase. The presence of a 003 reflection in the α form implies a decrease of the symmetry proposed by Brisi [2] and Mac Chesney *et al* [4], thus suggesting a more distorted lattice; this hypothesis was confirmed in the structure determination of the α -phase [14], belonging *to P4mmm* space group. No further structural work is contemplated at present for β

Intensities: $vs = verv$ strong, $s =$ strong, $ms =$ medium strong, $m =$ medium, $w =$ weak, $vw =$ very weak, $vw =$ very very weak.

and γ forms, because the great number of atoms in the unit cell greatly increases the evaluation difficulties. The presence of Fe⁴⁺ in γ -Sr₃Fe₂O_{7-x}, however, suggests the existence of perovskite layers also in this phase.

References

- 1. P. BATTI, *Ann. Chim. (Rome)* 52 (1962) 941.
- 2. c. BRISI, *ibid51* (1961) 1399.
- 3. C. BRISI and P. ROLANDO, *ibid* 59 (1969) 385.
- 4. J. B. MAC CHESNEY, H. J. WILLIAMS, R. C. SHERWOOD and J. F. POTTER, *Mat. Res. Bull. 1 (1966)* 113.
- 5. S. N. RUDDLESDEN and P. POPPER, *Aeta Cryst.* 11 (1958) 54.
- 6. P. K. GALLAGHER, J. B. MAC CHESNEY and D. N. E. BUCHANAN, J. *Chem. Phys.* 43 (1965) 516.
- 7. J. B. MACCHESNEY, J.F. POTTER,R. C.SHERWOOD and H. J. WILLIAMS, *ibid* 43 (1965) 3317.
- 8. S. MORI, *d. Amer. Ceram. Soe.* 49 *(1966)* 600.
- 9. P. BATTI and E. LUCCrlINI, *Ceramurgia* 2 (1972) 165.
- *10.* E. LUCCHINI, S. MERIANI and D. MINICHELLI, *Acta Cryst.* B29 (1973) 1217.
- 11. R. WARD and z. D. STRUTHERS, J. *Amer. Chem. Soc.* 59 (1937) 1849.
- 12. R. SCHOLDER, *Angew. Chem.* 65 (1953) 240.
- 13. D. MINICHELLI, *Ceramurgia* 3 (1973) 3.
- 14. E. LUCCHINI, D. MINICHELLI and G. SLOCCARI, Acta Cryst. in press.

Received 20 July and accepted 21 August 1973.